

WATER SUPPLY, TREATMENT AND DISPOSAL IN UNCONVENTIONAL GAS DEVELOPMENT

Paul Ziemkiewicz, PhD, Director Water Research Institute West Virginia University

INFUSE 1 March 2016

Water Withdrawals

Major sources:

surface watermunicipalitiesrecycled produced water

THREE WELL PADS: GREENE CO. PA

PRODUCING WELL SITE: 4 WELLS

- 2 hectares total
- access/service road
- Out slopes
- 1.2 hectares pad
- well heads
- separators
- condensate tanks

PRODUCING WELL SITE WITH FLOWBACK POND 6 HECTARES

- access/service road
- well heads
- separators
- condensate tanks

Terminology: liquids

- Makeup water-impoundments/tanks
 - fresh water
 - waste water
- Hydraulic fracturing fluid-frac fluid
 - ~ 16,000 to 19,000 m³ injected
 - Makeup water +
 - Proprietary mixture of chemicals
 - Proppant
- Flowback-produced water
 - Fluids returned from the well after frac
 - ~70-90% lost in formation
- Recycle
 - Flowback-produced water used for makeup

Fluids at the well site

Flowback volumes: MIP 3,5H 3H produced 92% more water, 30% more gas 1 bbl=0.16 m³ 6.25 bbl/m³

~10% of

CHEMICAL CHARACTERIZATION

- Flowback/produced water
 Recycled flowback + makeup water + additives
- •Hydraulic fracturing fluid
- •Drilling mud

Flowback day ~1,350

Produced water from old (MIP 4,6H) wells predominantly Na, Ca, Cl

	Produced water (mg/L)						
	MIP 4H	MIP 6H					
Parameter	14-Apr-15	14-Apr-15					
Chloride	59,300	34,700					
Sodium	23,700	15,000					
Calcium	9,480	5,550					
Barium	4,970	3,040					
Strontium	1,970	1,310					
Magnesium	809	571					
Bromide	643	416					
Potassium	146	93					
Lithium	93	53					
Iron	93	155					
Sulfate	63	63					
Manganese	3	4					
Aluminum	1	0					
EC *	143,000	99,300					
Alkalinity	124	180					
TDS	104,000	65,100					
TSS	75	99					
* µS/cm							

				SDWA	MIP 3H		MIP 5H		
	MDL		units	MCL	HF	FB day 42	HF	FB day 42	
	0.0011	Al	mg/L	0.05	0.42	0.00055	0.02	0.00055	
MSEEL data	0.0007	As	mg/L	0.01	0.00	0.35	0.00	0.35	
	0.0002	Ва	mg/L	2	0.04	2500	0.048	1100	
	0.4	Са	mg/L		35.5	6800	34	2900	
Nearly all parameters	0.0001	Cr	mg/L	0.1	0.003305	0.05	0.00005	0.05	
were higher in	0.01	Fe	mg/L	0.3	1.996	140	0.005	120	
flowback than frac	0.0001	Pb	mg/L	0.015	0.00	0.005	0.00	0.005	
	0.019	Mg	mg/L		9.70	710	8.00	330	
fluid	0.0002	Mn	mg/L	0.05	0.11	11	0.00	1.8	
	0.0004	Ni	mg/L		0.01	0.2	0.00	0.2	
Dink: oxoodo	0.03	К	mg/L		3.40	130	2.50	120	
FILIK. EXCEEUS	0.001	Se	mg/L	0.05	0.00	0.5	0.00	0.5	
drinking water MCL	0.0001	Ag	mg/L	0.1	0.00	0.05	0.00	0.05	
-	0.1	Na	mg/L		46.50	21000	30.00	13000	
	0.0003	Sr	mg/L		0.34	1400	0.27	630	
	0.02	Zn	mg/L	5	0.07	1.2	0.04	1.2	
	4.3	Alk	mg/L		70.00	140	64.00	240	
	0.09	Br	mg/L		0.17		0.95		
	0.29	Cl	mg/L	250	31.50	61000	34.50	37000	
	3	SO4	mg/L	250	125.00	7	140.00	7	
	7.6	TDS	mg/L	500	340.00	88000	565.00	55000	
	0.25	Benzene	µg/L	5	0.13	10	0.13	27	
	0.2	Toluene	μg/L	1000	0.43	13	0.01	53	
	0.22	Ethylbenze	µg/L	700	0.11	1.1	0.11	4	
	0.62	Xylene tot	μg/L	10000	0.32	3.2	0.32	23	
	0.005	MBAS	mg/L	0.5	0.00	0.38	0.00	0.26	

Flowback evolution-major inorganic ions

MSEEL

Ziemkiewicz et al., 2011

Flowback evolution-organics

Hayes, 2009

MSEEL

Flowback/Produced Water

- Extremely saline: 10,000 to 300,000 mg TDS/L
- Inorganics: Na, Mg, Ca, Sr, Ba, Cl, Br
- Organics: BTEX
- NORMs: α,β,²²⁶Ra, ²²⁸Ra,
- During flowback cycle
 - Discharge drops off rapidly
 - Initially 5,000 bpd to 175 bpd after 60 days
 - Ion concentrations increase
- Most of the contaminants come from the formation-not frac fluid

Terminology: solid wastes

Drilling mud

- Returns to the surface with cuttings during drilling
- Recycled after cuttings removed
- To disposal after well completed

• Drill cuttings

- Rock fragments-clay to fine gravel
- ~500-800 tons/well or 25 to 50 truckloads
- To disposal after separation from drilling mud
- Flowback Solids-filter cake, precipitates, suspended solids

Drilling wastes

Mud

Cuttings

Solids separation

Plate and frame filter press

	Drill Cuttings: Vertical Section										
Conventional	Drill	%>									
drilling mud	Cuttings	TCLP	min	max							
0	Cr	100%	6.7	32.8	mg/L						
	As	90%	2.4	30.6	mg/L						
Drill Cuttings	Pb	80%	3.5	84.9	mg/L						
% samples	Ва	70%	23.9	7,870.0	mg/L						
(Liquid fraction)	Benzene	70%	0.0	300.0	μg/L						
> TCLP limit	Se	40%	0.0	3.3	mg/L						
	Hg	10%	0.0	0.3	mg/L						

Using 'Green' Drilling Mud no parameters exceeded TCLP

- In the Vertical and Horizontal (Marcellus) sections:
 - TCLP organics-no exceedances
 - TCLP inorganics-no exceedances

Drilling mud: Bio-Basetm 365

Property	Unit	Value	Test Method
Physical state		Liquid	Visual
Biodegradation, 28 days	%m	55-60	OECD 301
Potential carcinogenic label		-	No -
BTEX**	mg/kg	< 1 *	ASTM 5790 mod.
PAH	mg/kg	< 0.1 *	EPA 8100

*Below the detection level of the method. **BTEX (Benzene, Ethylbenzene, Toluene, Xylene).

Radiochemistry: drill cuttings Brazil nuts are about 12 pCi/g

Radionuclides (pCi/g)

vertical	EPA 901.1								9310						
Marcellus	⁴⁰ K ²²⁶		²²⁶ Ra	Ra ²²⁸ Ra			alpha			beta					
	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC	Act	Unc	MDC
MIP 4400 3H	28	4.8	1.0	1.2	0.3	0.3	1.8	0.5	0.3	15.0	7.1	9.8	24.5	6.3	5.6
MIP 5026 3H	24	4.4	1.4	1.4	0.3	0.2	1.9	0.5	0.3	10.5	5.8	9.2	19.4	4.8	4.1
MIP 6798 5H	27	4.5	0.9	1.8	0.3	0.2	1.4	0.4	0.5	17.1	7.7	11.2	27.8	6.7	5.4
MIP 8555 5H	26	4.2	1.1	4.7	0.7	0.2	1.3	0.4	0.4	27.0	9.6	10.2	36.9	8.6	6.6
MIP 8555 5H DUP	25	4.6	1.5	4.6	0.7	0.3	1.1	0.6	0.6	38.1	11.1	9.1	29.8	6.8	4.9
MIP 9998 5H	17	4.3	2.7	9.2	1.3	0.3	0.5	0.9	0.9	46.8	11.0	4.7	42.9	9.0	5.9
MIP 11918 5H	22	3.7	1.1	4.0	0.7	0.2	0.7	0.5	0.5	24.4	9.2	10.3	23.0	6.2	6.2
MIP 11918 5H	20	3.4	1.1	4.2	0.6	0.2	0.8	0.4	0.6	23.8	6.8	5.2	28.7	6.3	5.1
MIP 13480 3H	18	3.2	1.2	9.2	1.3	0.2	0.8	0.6	0.5	55.7	14.7	11.5	35.4	8.2	5.8
MIP 13480 3H DUP	18	3.5	1.4	9.7	1.4	0.3	1.1	0.4	0.3	59.2	14.9	9.3	35.0	7.8	4.6
MIP 13480 3H Mud	13	3.0	1.1	5.6	0.9	0.2	0.5	0.3	0.8	60.0	15.9	10.5	42.5	9.6	6.1
MIP 14454 5H	20	3.8	1.1	5.8	0.9	0.2	1.3	0.5	0.6	28.8	7.9	6.5	37.5	8.0	5.4

EXPOSURE PATHWAYS

A. HAS NOT BEEN DOCUMENTED

B. DOCUMENTED,RESULTS FROMPOOR WELLINTEGRITY

Leakage: Avoidable sources of contamination

Bank failure under liner

Fuel leak at generator

Containing leaks

Roll-Off container leaking drill cuttings and fluid onto unlined drill pad

Good: A properly – constructed impoundment

Bad: Poorly installed plastic liner

Unsupported pipe may break

Explosions are rare but this one resulted in a major release and fish kill-No secondary containment

Practical Risk Reduction: Polymer liner across drill pad covered with gravel. Secondary Containment around tanks

Most likely human/environmental exposure pathways

Risk Reduction: leakage at the well site

Issues

- 1. Discharge of produced water to local water supply
- 2. Shallow groundwater contamination
- 3. On site spillage
- 4. Blowout during completion
- 5. Vertical well leakage
- 6. Deep contamination from horizontal leg

Solutions

1-3. Onsite containment, double HDPE liner, bermed, adequate to store 2 x maximum stage volume

- 4. Double BOPs
- 5. Well bore integrity
- 6. Never documented

Recommendations: reducing accidental releases of Produced Water

- Recycle/reuse flowback and produced water for frac water makeup
- On site containment:
 - Production casing integrity-testing prior to well completion
 - Drill pad-lined and bermed
 - Pits-construction/design/inspection according to State standards
 - Flowback lines to be properly installed/protected
- Transportation:
 - Tracking and accountability
- Solid waste characterization and disposal according to protective standards (RCRA?)

FOR MORE INFORMATION PLEASE CONTACT:

Paul Ziemkiewicz, Director WVU Water Research Institute 304 293 6958 pziemkie@wvu.edu

